
International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 100
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Embedded System Design And Challenges
S. Sai Manimala, K. PrasanthKumarReddy.

ABSTRACT

Many embedded systems have different design constraints. Design culture dysfunction make design difficult to be successfully applying tools to

embedded system. Integration of system design is increased. Due this there is a widening gap in size and complexity of chip-level design and

design capabilities. To bridge this gap in design productivity a number of advances have been made in high-level modeling and validation.

Specifically advances have been made in ‘Abstraction and Reuse ` and ‘Structured design methods `. Structured design methods are Component-

Based Design and Platform Based Design. There are many trends for design embedded system. Out of that highly programmed platform and UML

for embedded software development are recent one. In unified embedded system development methodology, these two can be combined. Though

these two concepts are powerful in their own right, their combination magnifies the effective gain in productivity and implementation.

————————————————————

INTRODUCTION

1.1Overview:

Fabricating millions of transistors on chip has become

easier, due to advances in microelectronics processing and

devices. The microelectronic designers through advances

in modeling and validation technique are exploring a

number

of strategies. These are used to improve the design

productivity and the quality of design. There is an impact

of raising abstraction level at which designs are entered

and validated on design quality and design time.

1.2 Components for embedded system design

For a system on chip (SOC) there are virtual components

also. SOC represents implementation of a complete

application on a single chip. SOC consist of a range of

building blocks from processors, memory, to

communication and networking elements. There may be

top down or bottom up approach to building an

application in SOC.

 In the bottom up approach the application functionality

can often be structured into various hardware and

software components. Top-down approaches yield

refinements that are then mapped to various

hardware/software components. So, component may then

be a piece of functionality implemented in software or as a

dedicated piece of silicon hardware or combination of

both. A component may be virtual in that it represents a

well-defined functionality without an associated hardware

hardware implementation.

 The phrase “virtual component “is used to describe

reusable IP (Intellectual Property) components. IP

components are composed with other components, which

are similar to real hardware components plugged into real

sockets on the board.

1.3 Component Composition Framework

 A composition framework provides reasoning capabilities

and tools. The reasoning capabilities and tools enable a

system designer to compose components into a specific

application. These capabilities include selection of correct

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 101
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

interfaces, simulation of composed design, testing and

validation for behavioral correctness and equivalence

checks. A limited form of component composition is

common in purely software system where environments

often known as Integrated Development Environment

(IDE).

 IDE’s are used to facilitate component selection and

composition. Hardware component composition

frameworks are more difficult to build as compare to

software IDE’s such as Microsoft Visual Studio. Part of

complexity is due to various ways in which the integrated

circuit blocks are represented, designed and composed. At

higher abstraction levels, often a connection between

components is create through limited set of ports and

signals in. It is often known as, structured design for

SOC’s. Such a composition implies a structural

representation for the components. Even if a component is

not structural, but behavioral, it can often be composed

using special components (e.g. protocol modules)

interconnecting the components. To ensure systematic

compatibility of models, it is important to address how the

composition is resolved along each of the dimensions. The

dimensions are temporal detail, Structural detail,

Functional detail, Data value detail. This is often achieved

by creating wrapper around the library components.

 Wrapper are created for enabling communication values

between different modules and co-ordination between

them. Wrappers here refer to code that enables reuse of

existing component models. Using programming

languages, there are several ways in which in which such

wrappers can be built. A common strategy for wrapper

building is by using inheritance available in most object-

oriented programming languages. In this approach

wrappers are programmed manually by inserting code

inside the inherited class. The wrapper and the component

are same as the object.

 An alternative is to use a wrapper that, if needed,

delegates to the design component. In this case,

component is not modified, the wrapper and the

component are two distinct object. Modules from different

libraries can be imported as is, and dynamically placed in

wrappers at run time.

Fig. 1. Wrapper implementation strategies: (a) by
inheritance (b) by composition

 Figure 1(a) shows how wrapper is implemented by

inheritance. In this case, if a designer wants to reuse a

component of class C, the class can be specialized by

inheritance to a subclass CW to implement the wrapper

functionality. If the class CW is to be reused in a different

context, then it can be also inherited into a class

CW_W2 that implements more wrapper code to

interoperate in the new integration context. The problem

in this scenario is that all the three classes have a common

self, and the original component has to be modified in

every reuse context, via inheritance.

Figure 1(b) shows the UML diagram of how a wrapper

hierarchy can be built for composition (the open arrow

indicates an association). In this case, the wrappers are

separate from the component object hierarchy, and the

interoperability interface remains separated in the

wrappers, and any call to functionality of the original

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 102
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

component is delegated from the wrapper to the

component.

A good CCF provides a composition language and

capabilities for dynamic composition, simulation and

verification. The composition language is either visual or

textual. Composition language should be able to ask for

components from the component library. Framework must

have automated support for selecting the correct type that

makes the composition possible. The composition should

be dynamic i.e. one does not have to go through

recompile-test cycle when new components are added or

replaced.

 In order to be able to compose components at different

levels of abstraction, and/or models of computation, met

an information should be available. The meta information

is about the components at a meta-level, such that it can

allow users to understand implications of composing two

arbitrary components.

 Composition language: It is not used for specification of

components. The role of composition language instantiates

and connect the components. The component model

describes the connection by dictating how and when

things can be composed. A connection may be “relation”

among components.

STRUCTURED DESIGN METHODS

 2.1 Structured design methods types:

 Platform Based Design and Component Based Design

 Platform based design has emerged as one of the key

development approaches for complex systems. The choice

of platform is done after exploration of both the

application and architecture design spaces. The choice of

platform is driven by cost and time to market

considerations. In component based design, components

can be distributed or local. Distributed components can be

thought of as objects that contain both data and operation.

They are small service providers. The key is that they can

be used as inputs (or arguments) to operations provided

by other components and returned as the output from

these operations.

2.2 Platform base design: Platforms are classified into

three abstraction levels: architecture (ARC), application

programming interface (APT), and specific programmable

(ASP) platforms.

 The ARC layer includes a specific family of micro

architecture (physical network).

Hence, UML deployment diagram can be used to represent

the ARC platform. The API layer is a switch abstraction

layer wrapping ARC implementation details. The API

should be presented by showing what kind of logical

services are provided and how they are grouped together.

Platforms at Different Levels ASP is a platform, which
makes a group of application domain-specific
services directly available to users. For e.g., the function to
set up a connection in the Intercom is such domain-specific
service. In addition to calling these existing services, users
sometimes need to modify or combine them, or even
develop new services to meet certain requirements
consequently, unlike API, here it becomes essential
 to show not only what functionality these
services offer, but also how such services are supported by

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 103
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

their internal structures, and how they relate to each other.
In UML, the class diagram best represents such
information.

2.3 Component Based Design:

 This approach promotes separation of interface and
implementation. It provides a statistical environment built
up from smaller components. And allows different
algorithms and operations to be performed. This is done in
different ways without minimal changes to overall
environment. However, an implementation for small
amounts of data may store it all in

memory. For very large quantities of data, it might be
stored in compressed form either in memory or on disk.
Alternately, the values may be produced in real-time from
a device.

 This approach brings up many different issues such as

performance, security, reproduction, discovery etc. While

the last of three of these have been dealt with in the

context of the Internet, performance has not. A

component-based architecture will more likely lead to

increase in performance, with a little work. Suppose we

have located and use a component that fits a tree model,

but too slowly. Provided that, we can communicate with it

only via its operations, we can locate a faster version of

this.

Due to this substitutability of components it has got

potential success. A little further thought leads us to see

how components can give us what is termed high

performance computing. These days’ multiple processor

machines and clusters involving multiple machines are

becoming common. In simple terms, we can imagine each

processor being associated with a component and one in

charge of dispatching the subtasks that make up an overall

computation. This task manager invokes operations in

these distributed components and awaits the answer and

pieces them together, potentially issuing new tasks to idle

component.

2.4 Acknowledgments

The preferred spelling of the word “acknowledgment” in
American English is without an “e” after the “g.”
Recognition of the importance or quality of something.
acceptance of the truth or existence of something

Author
S. SAI MANIMALA,3RD YEAR, ECE, GITAM’S

UNIVERSITY, VISAKHAPATNAM.

Author

K.PRASANTHKUMARREDDY3RDYEAR,

MECHANICAL,LINGAYA’SUNIVERSITY

FARIDABAD.

2.4 References

We would like to express our special thanks
of gratitude to our Senior Professors who was
always willing to help and give their best
suggestions. Special thanks to the reviewers
for pointing out ways to improve the
presentation of this paper.

IJSER

http://www.ijser.org/

	INTRODUCTION
	1.2 Components for embedded system design
	1.3 Component Composition Framework
	Fig. 1. Wrapper implementation strategies: (a) by inheritance (b) by composition
	Platform Based Design and Component Based Design
	2.4 Acknowledgments
	2.4 References

